Can we live without plastic?WASHINGTON -- Last week I went to a program at the National Building Museum, Life After Plastic, during which panelists discussed the impact of rising oil prices on the cost of plastic building materials; the life cycle of plastic; health and environmental concerns; and new product materials such as soy, corn and mushrooms. Moderator Lance Hosey, president and CEO of GreenBlue (a nonprofit focused on sustainable design and production in business and industry) started off the discussion by telling us that we produce some 300 billion pounds of plastic a year, in highly toxic and dangerous petro-chemical plants. Less than 5 percent of plastic is recycled, he said; other than the small amount of plastic that has been incinerated, every piece of plastic ever made still exists today. Later he told us, œWe spend so much time agonizing over making better [water] bottles how is it sourced, how is it made--instead of asking: Why are we shipping water from France to begin with? Why are we carrying [them] around to begin with? As I listened to the panelists, I sat on a plastic chair, typed on a plastic laptop with a plastic clip in my hair, plastic sunglasses on my head, and a plastic cell phone, a plastic pen and a plastic-filled wallet in my bag. Will plastic ever disappear? Heres what the experts had to say: Blaine Brownell Assistant ProfessorUniversity of Minnesota School of Architecture There are a lot of plastics that come from oil, but ¦ were increasingly seeing plastics that come from renewable material. And I think scientists and architects are becoming more aware of what happens after that first life of a product. One of my favorite [alternative materials] comes from a company called Ecovative Design. MycoBond (used to replace foam) and MycoPly (used to replace balsawood) are made from agricultural waste and mushrooms. Theyre very fringe its rudimentary uses now: packaging, shipping. Theres also some companies making things from invasive plants. PIE (Project Import Export, Inc.) uses water hyacinth to make wicker furniture. But its interesting to think about the process by which theyre created the method has changed. Youre calling and ordering a product, and the manufacturer starts growing it instead of manufacturing it. Theres certainly red flags [about materials] today, versus my first naïve career as an architect, where Id just grab things off the shelves. Theres increased demand for [sustainable building products], but as architects, its not easy. If, for example, it comes from a place where chain of custody is sketchy, it can have the greenest chemistry but not be the green product were looking for. What I teach students: It seems we have to embark on a new era of really creative solutions that are adaptive reuse-focused. In terms of the technology, we can create plastics from renewable materials. There are a lot of different sugars from which were getting bioplastics. Dr. Wool from the University Delaware said the industry is moving like gangbusters toward a time when we move away from polyurethane, and itll be more tied with the agriculture tradition. Theres an interesting issue about durability in the physical environment and the desire for that--like what vinyl siding does so well--versus the fear factor that we dont want [the plastic around forever]. Theres this strange conflict that emerges. Im asked about biodegradation, which we want in some cases (we want the water bottle to biodegrade), but what about buildings? We dont want those to biodegrade. [We need to think about the] time scale to design: So is this a 100-year building or 25-year building? Theres so much emphasis on up front first use. Jay Bolus Vice President of Technical OperationsMBDC Alternatives to petroleum based plastic: Corn-based, cellulose-based, soy based, sugar based. Polyethylene is one of the greener plastics; it can actually be made from sugar cane. To me, the building block is not as important as what happens at the end if we keep throwing things into the landfill or incinerator well never [make progress]. I dont really feel like the problem is the [materials]; its more end of life. Theres not a one-size-fits-all plastic. Maybe sugar cane makes sense in certain regions of the world, but were going to need a whole suite of solutions. In some cases, it might make sense to use sugar cane; or to use petroleum-based plastic; or to switch to steel and aluminum. Recycling came about as a waste management strategy; its not about reusing materials. You can mandate it, but until you start looking at it that way [as a valuable material] I dont think any of these programs will really work. Robert Peoples DirectorAmerican Chemical Societys Green Chemistry Institute I think plastic is going to be with us for a long time. Im believer in evolution: We have to evolve, increasing our understanding over time. Were beginning to understand how these synthetic materials interact with living systems. I think you have to dig very deep to understand all the issues when you talk about materials. There are many kinds of plastic. So the big challenge for us is: Can we develop materials that are benign by design and derived by something other than petroleum? Green chemistry is all about thinking about end of life considerations before you design the molecule and put it into the environment. If you apply these design principles up front, you would know if its not a good molecule. The goal [in green chemistry] is to reduce or eliminate the hazardous materials or products. Its a proven systems approach. We have hundreds of regulations in the U.S. that deal with chemicals. If you can apply the principals of green chemistry, you wont need regulations. There are zero federally funded green chemistry centers in the U.S. China is a mess environmentally right now, but China gets the fact that green chemistry is [the solution]; there are more than 20 green chemistry centers federally funded by China right now. They understand that they have created a crisis, and they are going to invent their way out of that crisis. The sad thing is that were paying for it--its our appetite for all of these disposable materials. Our goal is to always get greener. There are plastics that are greener than others. Theres probably nothing out there that wed call truly green, but manmade materials, most derived from oil today, will fall across some spectrum of green. I would say its not just transiting from petroleum-based to bio-based. The first thing we have to do is make people aware that alternatives exist, and then we can provide education and information. Then we have the economy of scale, and then well make progress. We are making progress, its just slower than some of us would like to see it. We buy 30 to 50 billion [PET bottles] in the U.S. We recycle about 25. The others get sent to the landfill. We cant achieve a sustainable society by the linear expansion of the existing technologies we have. Well have to do things differently and pay a little more if we want to make changes, and we cant be myopic about it. What works as a good solution where they have a lot of sugar cane in Brazil may not work in Sydney or san Francisco. We must get the economics right. Society has to bear the cost of sustainability. Weve kind of had a free ride--when youre done with something you throw it away. But we know theres no such thing as œaway,  because you cant destroy matter. Weve been throwing things away not worrying about where œaway  is, and œaway  is coming back to haunt us.